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Abstract

Stochastic volatility models that incorporate diffusing diffusivity have the potential to capture
the heavy-tailed behavior and extreme movements observed in market volatility indices such as the
VIX. In this paper, we evaluate two models — one based on an Ornstein-Uhlenbeck (OU) process
(Model 1) and another driven by a Lévy stable process (Model 2) — and compare them to classical
models such as Heston’s and Hull-White’s. Parameters are estimated via maximum likelihood (MLE)
using historical VIX data (training period: 2015-2017), and forecasts are produced in a rolling-window
framework for the period 2018-2024. Our findings indicate that while the OU model provides strong
point forecast accuracy, it severely underestimates tail risk. Conversely, the Lévy stable model
captures heavy-tailed features very well (with a tail index near 1.3), resulting in a significantly lower
Kullback—Leibler divergence with the empirical distribution, albeit at a small cost in mean forecast
accuracy. The Heston model offers a middle ground by capturing state-dependent volatility and
moderate tail behavior. These results highlight the importance of selecting models based on the

intended application, particularly for risk management and derivative pricing.

Keywords: Stochastic volatility; Diffusing diffusivity; Lévy stable process; Ornstein—Uhlenbeck
process; VIX index; Derivative pricing
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1 | Introduction

Volatility is a cornerstone of financial economics and plays a crucial role in asset pricing, risk management,
and derivatives valuation. Traditional models, most notably the Black-Scholes model [1, 2], assume that
asset prices follow a geometric Brownian motion with constant volatility. However, extensive empirical
evidence shows that volatility is not constant; rather, it is stochastic and exhibits clustering, mean

reversion, and extreme movements (“fat tails”) that standard models fail to capture [3, 4].

1.1 | Fundamentals of Volatility Modeling

Volatility reflects the variability in asset returns and is a measure of uncertainty in the market. Empirical

studies have consistently documented that:
B Volatility Clustering: High-volatility periods tend to cluster together, as do low-volatility periods.
B Mean Reversion: Volatility tends to revert to a long-term average over time.

B Heavy Tails: Extreme changes in volatility occur more frequently than predicted by the normal
distribution.

These characteristics motivate the use of stochastic volatility models, where volatility itself is modeled as
a random process. Early models such as those proposed by Hull and White [3] and Heston [4] introduced
stochastic processes to govern the evolution of volatility. For example, in the Heston model, the variance
of an asset follows a mean-reverting square-root process, allowing for stochastic fluctuations and a more

realistic term structure of volatility.

1.2 | Diffusing Diffusivity

A recent innovation in this field is the concept of diffusing diffusivity from statistical physics. In physical
systems, particles often diffuse in heterogeneous media where the diffusion coefficient itself is random and
time-varying [10]. This idea can be applied to finance by treating the volatility as a diffusion coefficient
that itself diffuses. Such a framework can capture additional complexity in the evolution of volatility,

particularly the propensity for extreme movements.
In our previous work [12], we derived two diffusing diffusivity models:

1. Model 1 (OU Process): Volatility follows an Ornstein—Uhlenbeck process, ensuring mean reversion

with Gaussian fluctuations.

2. Model 2 (Lévy Stable Process): Volatility follows an OU process driven by Lévy stable noise,
which introduces heavy tails and asymmetry.

The advantage of these models is that they not only capture the central dynamics (mean reversion) but

also provide a mechanism to account for the extreme events observed in financial markets.

1.3 | Motivation and Scope

The VIX index, which represents the market’s expectation of 30-day volatility, is particularly well-suited
for testing stochastic volatility models. VIX exhibits pronounced mean reversion and is notorious for its
sudden, extreme spikes during periods of market stress. Accurate modeling of VIX is crucial for pricing
volatility derivatives and for risk management purposes.
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In this paper, we evaluate the performance of our diffusing diffusivity models relative to classical models
like Heston and Hull-White. Our analysis includes:

B Parameter estimation via maximum likelihood (MLE) on historical data (2015-2017).
B Rolling-window forecasting of VIX for 2018-2024.

m Comprehensive evaluation metrics including forecast errors (RMSE, MAE), information criteria

(AIC, BIC), distributional comparisons (KL divergence) and tail risk measures

This comprehensive approach not only tests the predictive performance of the models but also assesses
their ability to replicate the full distribution of VIX returns, with particular emphasis on the tails. The
findings will have implications for both practical risk management and theoretical model development.

2 | Methodology

2.1 | Model Formulations

2.1.1 | Model 1: Ornstein—Uhlenbeck (OU) Process

We model the VIX level v(t) as a mean-reverting process:
dUt = Ii(g - Ut) dt + 0y th, (21)

where k > 0 is the mean reversion rate, 6 is the long-run mean, o, is the volatility-of-volatility, and W; is
a standard Wiener process. Discretizing over a daily interval At = 1, we obtain:

Vi1 = 0 + ('Ut — 0)€_K + €, (22)

with ¢ ~ N (0, %(1— e‘2”)).

2.1.2 | Model 2: Lévy Stable Process Driven Volatility
To capture heavy tails, we model volatility using a Lévy stable process:
dvy = k(6 — vy) dt + v dL™P), (2.3)

where Lga’ﬁ )isa Lévy stable process with stability index 0 < a < 2, skewness parameter 8 (we set § =1

to reflect the asymmetry of volatility jumps), and scale parameter v. The discrete-time form is given by:
Vip1 = 0+ o(vs — 0) + e, (24)
where ¢ = e™* and 1, ~ S(a, §,0,,0).
2.1.3 | Heston Model
In the Heston model [4], the variance follows a Cox—Ingersoll-Ross (CIR) process:
dyr = k(0 — ye) dt + E\/ye AW, (2.5)

with y; = v2. Although the full model is two-dimensional, we approximate it using Euler-Maruyama

discretization for one-day forecasts.
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2.1.4 | Hull-White Model

The Hull-White model [3] assumes a lognormal process for volatility:
dvy = iy vy dt + 0y vy AWy, (2.6)

which implies that In v, is a drifted Brownian motion. We use a variant with very slow mean reversion to

capture the observed behavior of VIX.

2.2 | Parameter Estimation

We estimate model parameters using Maximum Likelihood Estimation (MLE) on training data (2015-2017).
For the OU model, we use the discrete-time form in Eq. (2.2) and solve an equivalent AR(1) regression:

X1 =A+BX;+e, €~N(00d2),

A | 202
n——lnB, 0—@, Oy = ]_—B2

For the Lévy stable model, we employ SciPy’s levy_stable.fit function to estimate «, £, location, and

scale from the log returns. For the Heston model, we approximate the likelihood using Euler discretization
and minimize the negative log-likelihood.

2.3 | Rolling Window Forecasting

Out-of-sample forecasts are generated using a rolling window approach. For each day in the testing period
(2018-2024), we re-estimate parameters using the previous 252 trading days (approximately one year),
then forecast the next day’s VIX level. Point forecasts (i.e., the conditional means) are used for RMSE
and MAE calculations, while full predictive distributions are simulated to assess tail risk.

3 | Results

3.1 | Forecast Accuracy

Table 3.1 summarizes the RMSE, MAE, AIC, and BIC for each model, computed over the 2018-2024
forecast period.

Table 3.1: Forecast Error and Information Criteria (Lower is better).

Model RMSE MAE AIC BIC
Model 1: OU (Gaussian) 2.50 1.80 5400 5420
Model 2: Lévy Stable 2.70 1.90 5380 5430
Heston (CIR) 2.40 1.70 5370 5440

Hull-White (Lognormal SV)  3.00 2.20 5500 5520

While the OU and Heston models yield slightly better point forecasts (lower RMSE and MAE), the Lévy
stable model offers improved likelihood performance (lower AIC) indicating a better overall fit to the data
despite a small penalty in point accuracy. The Hull-White model performs worst.
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3.2 | Distributional Fit and Tail Behavior

Figure 3.1 shows the empirical probability density function (PDF) of daily VIX log returns (2018-2024)
compared with the PDFs implied by each model. The empirical distribution exhibits heavy tails, which the
OU and Hull-White models (Gaussian) fail to capture. In contrast, the Lévy stable model closely matches
the tail behavior, as further evidenced by its low Kullback-Leibler (KL) divergence (see Table 3.2).

PDF of VIX Daily Returns: Empirical vs Model

Empirical
—— 0OU model (Normal)
—— Stable model (alpha=1.72)
—— Heston model

-0.2 0.0 0.‘2 0.4 0.6 0.8
Log return
Figure 3.1: Comparison of empirical and model-implied PDFs of daily VIX log returns. The stable
model (red) aligns closely with the empirical PDF (black dots) in the tails, while the OU (blue) and

Heston (green) models underestimate extreme movements.

Table 3.2: KL Divergence between Empirical and Model-implied Distributions. Lower values indicate a

closer match.

Model KL Divergence
OU Model 0.080
Lévy Stable Model 0.022
Heston Model 0.045
Hull-White 0.102

Quantile-Quantile (Q-Q) plots (Figure 3.2) further illustrate that the Lévy stable model accurately
reproduces the heavy tails of the empirical distribution, with points closely following the 45° line, whereas
Gaussian models deviate significantly at the extremes.
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Q-Q Plot: Heston vs Empirical

Q-Q Plot: Stable (a=1.72) vs Empirical
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Q-Q Plot: OU vs Empirical
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Figure 3.2: Q-Q plots comparing model-simulated quantiles (x-axis) with empirical quantiles (y-axis) of
daily VIX log returns. The Lévy stable model (middle) shows the closest adherence to the 45° line across

all quantiles.

3.3 | Tail Risk Metrics
Tail risk is critical for risk management. We calculate the 95% Expected Shortfall (ES) and the tail index

using the Hill estimator. Table 3.3 presents these results.
Table 3.3: Tail Risk Metrics. ES is expressed in VIX points and the tail index indicates the power-law

exponent (lower values imply heavier tails).

Model ESgs (%) Estimated Tail Index
Empirical 15.2% 1.35

OU Model 5.9% oo (Gaussian)
Lévy Stable Model 14.8% 1.30

Heston Model 9.8% oo (Gaussian)
Hull-White 7.0% oo (Gaussian)

The Lévy stable model not only closely matches the empirical Expected Shortfall but also produces
a tail index (a &~ 1.30) that is consistent with heavy-tailed behavior observed in the data, unlike the

Gaussian-based models which, by definition, have exponential tails (and infinite tail index in a Pareto

sense).

3.4 | Comparison of Actual VIX vs. Model Predictions

Figure 3.3 illustrates the daily VIX time series (black dashed line) from 2018 to 2024 alongside the
one-step-ahead forecasts generated by the Lévy stable model (red) and the Heston model (blue). The
stable model occasionally anticipates larger volatility spikes, reflecting its heavy-tailed noise component,
whereas the Heston model produces smoother forecasts due to its square-root process for variance. Despite
these differences in capturing extremes, both models track the general mean-reverting trend of the VIX

over the forecast horizon.
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Actual vs Predicted VIX (2024-01 - 2024-07)
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Figure 3.3: Time series plot of the actual VIX (black dashed) compared with the Lévy stable model
(red) and Heston model (blue) predictions from 2018-2024.

4 | Discussion

Our analysis reveals a trade-off between point forecast accuracy and distributional realism. The OU
model (Model 1) and the Heston model deliver superior point forecasts, with lower RMSE and MAE,
but fail to capture the extreme events seen in the VIX. In contrast, the Lévy stable model (Model 2)
sacrifices a small amount of forecast accuracy in exchange for a much more faithful representation of the
empirical distribution, especially in the tails. This is crucial for risk management applications, where
underestimating tail risk can lead to significant financial losses.

The Hull-White model performs the worst overall due to its lack of adequate mean reversion and insufficient
modeling of tail behavior. Our results suggest that while simple models may be sufficient for day-to-day

forecasting, heavy-tailed models are indispensable for accurately assessing extreme market risk.

A key observation is that point estimates (mean forecasts) may not fully convey a model’s ability to capture
risk. Although the stable model’s point forecasts are slightly less accurate, its predictive distribution (when
fully simulated) better accounts for rare but impactful events. For practitioners, this implies that risk
assessments (such as Value-at-Risk or Expected Shortfall calculations) should rely on the full predictive

distribution rather than just point forecasts.

5 | Conclusion

We have demonstrated that incorporating diffusing diffusivity into stochastic volatility models significantly
enhances their ability to capture the heavy-tailed behavior of market volatility, as exemplified by the VIX.
The Lévy stable model, despite a minor compromise in point forecast accuracy, yields a superior fit to
the empirical distribution, especially in the tails, compared to traditional Gaussian models like OU and
Hull-White, and even compared to Heston’s model.



ane

These findings underscore the importance of model selection based on the intended application: while
simple mean-reverting models may suffice for routine forecasts, risk management and derivative pricing
require a realistic representation of extreme events. Future work may explore hybrid models that blend
the strengths of mean reversion with heavy-tailed noise or extend the analysis to risk-neutral calibration

for option pricing.
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B | Fokker—Planck Equation for Volatility Models

For completeness, we include a brief derivation of the Fokker—Planck equation used in the diffusing

diffusivity framework. Consider a stochastic process for the diffusivity D(¢) governed by:
OII(D,t)

ot
where II(D, t) is the probability density function of D, and Fgp is the Fokker—Planck operator. In Model 1,

we have

— Fep TI(D, t), (B.1)

0 0
.FFP— 8_D (4FD6—D+2K)D),

while for Model 2 incorporating Lévy flights, Frp includes fractional derivatives:
Frp = —0 sec(m) D%+ kK 9 p.
2 oD

The corresponding characteristic function of asset prices then takes the form:

P(q,t) = <exp{—% <q2 + }1) /Ot dTD(T)}>D,

leading to the full price density:

e . St _
P(S;,t | So,0) = Sltexp{—% <1n§—; - ,ut) } %/ dqezq(lns_o_”t)P(q,t).
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