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Abstract

The study of intestinal cell differentiation is crucial for understanding fundamental biological
processes and greatly facilitates the development of clinical and regenerative medicine. In this
project, we performed data-driven analysis on single-cell RNA sequencing (scRNA-seq) data
to model intestinal cell differentiation. We primarily used the Python package Scanpy [1] for
writing the simulation code. Initially, we processed data through filtering and standardisation,
and applied Leiden Clustering to identify cell types by matching reference with marker genes
and performing enrichment analysis. To infer differentiation progression, we explored various
trajectory inference methods including Diffusion Pseudo-time (DPT), CellRank and Palantir -
each providing a unique perspective on differentiation trajectories. Finally, we examined the
impact of cell-cell communication and interactions on cell differentiation using ligand-receptor
interaction analysis. We combined these methods with visualisations, such as gene expression
heatmaps and line plots over pseudotime, to present a comprehensive view of intestinal cell
differentiation.
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1 Introduction

Understanding how cells differentiate, communicate, and form organised structures are some
of the main aims in biology. In the past, a technique called Bulk RNA sequencing (bulk RNA-
seq) provided an average gene expression profile across a large number of cells. However, a
recently developed technique called single-cell RNA sequencing (scRNA-seq) is able to provide
gene expression profiles for individual cells with a high resolution. This development in RNA
sequencing has offered many new insights into biological processes. We are now able to better
capture cellular heterogeneity and find possible distinctions within cell types, allowing us to
discover new cell types and distinguish cells that appear very similar. We can also now track
how cells differentiate into different types and trace the origin of each cell fate. Another insight
is in cell-cell communication within tissues which can be visualised and allows us to see which
cell types are interacting with which other cell types.

In this study, we applied the scRNA-seq workflow on mus musculus (mouse) intestine data,
which involves pre-processing and downstream analysis, to make biological inferences and
compare with accepted biology. We used data that had already been normalised, and so we
mainly continued with the downstream analysis consisting of well-known and now standard
methods such as clustering, marker identification, cluster annotation, trajectory inference, gene
dynamics, and cell-cell interaction graphs. We explored different clustering and trajectory infer-
ence methods, and also explored different scoring methods for cell-cell interactions following
the clustering and trajectory methods.

Clustering methods group cells into clusters with similar gene profiles and can provide insight
into cell types and transitional states, providing a greater depth of understanding into the cell
differentiation cycle. Marker identification then allows us to assign cluster labels of known
cell types. Trajectory inference methods produce pseudotime graphs that reconstruct the pro-
gression through the cell states throughout differentiation. The methods we explored enable
reconstructions of branching trajectories in the differentiation pathways and assign cells a pseu-
dotime reflecting its position along a continuum of differentiation. Cells further along a pseudo-
time are more committed to a cell fate. Cell-cell communication is known to be heavily involved
in coordinating cell self-organisation and cell fate decisions, so insights into cell interactions are
essential in understanding the biological processes. We proceeded to explore these interactions
via the use of tools such as LIANA.

The focus of this study is an application of the full scRNA-seq workflow, including downstream
analysis, to obtain biological inferences for cell pseudotime trajectories and interactions to, in
turn, confirm the currently known mechanisms in the small intestine crypt-villi.
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2 Biological Background

The small intestine is made up of crypts and villi. Its functions are governed by the many
different cell types that line its surface. The main function of the small intestine is to absorb
nutrients, which explains why the most common cell fate is the enterocyte cell type, an ab-
sorptive cell which can be seen in Figure 1. However, absorption alone is not sufficient for
the proper functioning of the small intestine. Secretory cells, which release substances such as
mucus and enzymes that help with digestion, are also essential. The secretory lineage includes:
Goblet cells, Enteroendocrine cells, Tuft cells, and Paneth cells. Therefore, while most cells
differentiate into enterocytes, a balancing of absorptive and secretory cells is required.

Ligand-receptor pairs

Cells interact and coordinate their behaviour through ligand-receptor pairs, which are central
to cell-cell interaction. A ligand-receptor pair consists of a signalling molecule, called a ligand,
produced by one cell, which binds to a receptor protein on the surface of a receiving cell. This
causes the receiving cell to respond and change its behaviour, such as differentiating into a new
cell type, migrating, or altering gene expression. Ligand–receptor pairs are fundamental to reg-
ulating spatial organisation and cell fate decisions within the intestinal crypt–villus structure,
and are thus key to understanding coordinated cell differentiation. Ligands can either be se-
creted and diffuse through space for longer range interactions or they can be membrane-bound,
fixed on the cell surface, requiring direct contact between cells, only allowing for short range
contact interactions. These ligand-receptor interactions can be classified into three principal
modes of signalling:

• Paracrine signalling: ligands are released into its surroundings and travel a short distance
signalling to nearby cells.

• Autocrine signalling: ligands are released into its surroundings and then the sender cell
itself responds to it. So this is cells signalling to themselves.

• Juxtacrine signalling: ligands are attached to the surface of the sender cell and can only
signal to neighbouring cells directly in contact with it [2].

Cell differentiation in the small intestine

Cells in the small intestine begin as intestinal stem cells (ISCs), which reside at the base of
the crypt and are capable of self-renewal and differentiation. ISCs divide and produce transit-
amplifying (TA) cells, which are rapidly dividing progenitor cells that sit right above the base of
the crypt immediately above the ISCs. These TA cells are an intermediate cell state and further
differentiate into either absorptive or secretory cells. This cell fate decision is mainly governed
by the Notch signalling pathway. TA cells expressing high levels of Delta ligands activate Notch
signalling (via the Notch receptors) in adjacent cells (as Delta ligands are membrane-bound).
This signal lead the lateral inhibition of the secretory cell fate for neighbouring cells and allows
themselves to commit to the secretory cell fate. Notch signals upregulate Hes1, a transcrip-
tional repressor, which suppresses Atoh1, a pro-secretory transcription factor. A suppressed
Atoh1 results in an absorptive cell fate by the prevention of the secretory cell fate and so these
neighbouring cells commit to becoming enterocytes. The absorptive fate is considered to be the
default cell fate [3].

Most of the differentiated cells migrate up the crypt-villus axis. However, Paneth cells migrate
downwards back to the base of the crypt among the stem cells. This direction of migration is
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governed by EphB-EphrinB signalling. Paneth cells express EphB receptors, while cells higher
up in the crypt-villus axis express EphrinB ligands. This ligand-receptor pair triggers a repulsive
signal and causes the Paneth cells to migrate away from regions with higher levels of EphrinB
leading to the downwards migration of Paneth cells [4]. In addition to the Notch signalling,
where a low Notch activity is required, Wnt signalling is crucial for the differentiation and
maturation of Paneth cells. Paneth cells themselves secrete Wnt signals and are essential for
stem cell maintenance in the base of the crypt [5].

Figure 1 Migration of Paneth cells. Unlike other secretory cells, Paneth cells are located at the
base of crypts. After differentiation, Paneth cells migrate downward to the crypt bottom, and
they are intercalated between stem cells. The migration of Paneth cells is mediated by EphB3.
From Figure 1 of Cui et al. [6].
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3 Clustering Methods

After preprocessing the data, as in normalisation and dimensional reduction (PCA), we can
apply clustering algorithms to group similar cells and these clusters can be interpreted as cell
types.

Background Concept: kNN Undirected Graph and Modularity

3.0.1 kNN Undirected Graph

To apply community detection (Clustering) algorithms such as Louvain or Leiden, we first need
to construct a cell-cell graph. This is typically done via a k-nearest neighbour (kNN) graph
based on PCA-reduced gene expression data.

Step 1: Dimensionality Reduction Let X ∈ Rn×d be the gene expression matrix, where n is
the number of cells and d the number of genes. We first reduce the dimensionality to k ≪ d
using PCA:

XPCA = (X − X̄)Wk

where Wk ∈ Rd×k is the matrix whose columns are the top k principal components, which
are the eigenvectors corresponding to the largest eigenvalues of the covariance matrix of X.
Each column of Wk represents a direction of maximum variance in the gene expression data.
Therefore, by multiplying the centered data (X − X̄) with Wk, we project the high-dimensional
gene expression matrix X ∈ Rn×d onto a lower-dimensional subspace of dimension k, capturing
the most informative patterns in the data.

Step 2: Neighbourhood Construction For each cell i, we compute the Euclidean distance in
PCA space and identify the k nearest neighbours:

Nk(i) = {j | j is among the k closest cells to cell i}

This forms a directed kNN graph where an edge i→ j exists if j ∈ Nk(i).

Step 3: Edge Weighting via Jaccard Similarity We convert the directed kNN graph into a
weighted graph using Jaccard similarity. For any pair of nodes i and j, we define the edge
weight as:

wij =
|Nk(i) ∩Nk(j)|
|Nk(i) ∪Nk(j)|

This reflects the fraction of shared neighbors and yields higher weights for more structurally
similar cells.

Step 4: Symmetrization Although the Jaccard similarity itself is symmetric (wij = wji),
computing it only when j ∈ Nk(i) (i.e., in one direction), the resulting graph may remain
asymmetric. To construct a fully symmetric adjacency matrix A for Louvain or Leiden clustering,
we apply one of the following symmetrisation strategies:

• Keep only mutual kNN edges: i ∈ Nk(j) and j ∈ Nk(i)

• Average weights: wij =
1
2(w

dir
ij + wdir

ji )
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• Take the maximum: wij = max(wdir
ij , w

dir
ji )

This results in a symmetric, weighted graph that can be used for community detection.

3.0.2 Modularity

We then define modularity, a measure that depicts whether a network is successfully parti-
tioned into distinct communities, within each of which the nodes are densely connected. Given
a weighted graph G = (V,E,w), the modularity Q of a partition is defined as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where:

• Aij: the weighted adjacency matrix (i.e., edge weight between node i and node j)

• ki =
∑

j Aij: the degree (total edge weight) of node i

• m = 1
2

∑
i,j Aij: the total weight of all edges in the graph

• ci: the community to which node i is assigned

• δ(ci, cj): an indicator function that equals 1 if ci = cj , and 0 otherwise

The second term kikj
2m represents the expected edge weight between nodes i and j at random in

a configuration model. The entire expression then calculates the difference between actual and
expected edges within each community.

3.1 Louvain Clustering

The Louvain algorithm is an inspirational, two-stage iterative optimization, aiming to maximize
modularity. It is widely implemented in community detection and cell clustering in single cell
data analysis [7].

Initiation Consider each node in the network as an individual community.

STEP 1: Local Moving Phase Consider the contribution of each community to the modularity
and write:

Q =
∑

clustersC

QC , where QC =
1

2m

∑
i,j∈C

(
Aij −

kikj
2m

)
=

1

2m

∑
i,j∈C

Aij −
1

2m

(∑
i∈C

ki

)2


We now introduce compact notation to simplify the analysis:

• Σin: the total weight of edges within the community c′ : Σin =
∑

i,j∈c′ Aij

• Σtot: the total degree of all nodes in c′ : Σtot =
∑

i∈c′ ki
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• ki: the degree of node i

• ki,in: the total weight of edges between node i and nodes in c′

Let node i be moved from its original community c to a neighbouring community c′. The
change in modularity ∆Q can be computed by considering the modularity contributions before
and after the move:

∆Q = Qafter
c′ −Qbefore

c′ +Qafter
c −Qbefore

c

The four terms are computed as follows:

(1) Qafter
c′ =

1

2m

[
Σin + 2ki,in −

(Σtot + ki)
2

2m

]
(2) Qbefore

c′ =
1

2m

[
Σin −

Σ2
tot

2m

]
(3) Qbefore

c =
1

2m

[
0− k2i

2m

]
= − k2i

(2m)2

(4) Qafter
c = 0 (assuming the original community becomes empty)

Substituting all terms into the ∆Q formula:

∆Q =
1

2m

[
(Σin + 2ki,in)−

(Σtot + ki)
2

2m

]
− 1

2m

[
Σin −

Σ2
tot

2m

]
+

k2i
(2m)2

Now, combine like terms and rearrange, the simplified modularity gain expression becomes:

∆Q =

[
Σin + 2ki,in

2m
−
(
Σtot + ki

2m

)2
]
−

[
Σin

2m
−
(
Σtot

2m

)2

−
(
ki
2m

)2
]

STEP 2: Aggregation Phase Once an increase in modularity is no longer possible, we finish
phase 1 and combine the nodes in the same community as a super node, forming a reduced new
network. Now the edges between 2 super nodes have weights equal to the sum of edge weights
between all pairs of nodes that lie in these communities in the original network. Moreover, self-
loops are formed at each super node, with weights being the sum of edge weights of all internal
nodes in the original network. Now repeat phase 1 and iteratively implement the procedure
until any movement of nodes into the neighbouring community does not bring any increase in
overall modularity.

Remark Even though after the first iteration, the expressions in each individual term of ∆Q
change due to self loop Aii of the super node i, the expression for ∆Q remains invariant. This
is because:

∆Q =
1

2m

[
Σin + 2ki,in +Aii −

(Σtot + ki)
2

2m

]
− 1

2m

[
Σin −

Σ2
tot

2m

]
− 1

2m

[
Aii −

k2i
2m

]

=

[
Σin + 2ki,in

2m
−
(
Σtot + ki

2m

)2
]
−

[
Σin

2m
−
(
Σtot

2m

)2

−
(
ki
2m

)2
]
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3.2 Leiden Clustering

Figure 2 Leiden Clustering of cells based on gene expression. Each colour represents a unique
cluster, later annotated with known cell types.

Leiden Clustering essentially shares the same algorithm as Louvain Clustering, aiming to max-
imize the modularity of a graph. However, a major advantage is that Leiden avoids possible
disconnected components within communities by refinement after moving the nodes. Unlike
the greedy strategy in Louvain Clustering, Leiden adopts a delayed strategy and it records the
potential moves for each node, then performs a connectivity-aware merging process at once
(This is called Fast Local Merge). Only groups of nodes that can be added to a community
without breaking its internal connectivity are actually moved.

Refinement For each community, the algorithm extracts its induced subgraph — a subgraph
containing only the nodes within the community and all the edges between them that exist in
the original graph. It then checks whether this subgraph is connected.

• If the induced subgraph is connected, the community is kept as is.

• If it is not connected, the community is split into its connected components — each of
which becomes a separate community.
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(a)

(b)

Figure 3 Comparison of initial and refined cell type annotations in UMAP space

In Figure 2 we observe that the Leiden clustering method grouped the cells into different clus-
ters, with little overlap at the boundaries, but still provides us information on similarities be-
tween clusters. Using a reference set of cell marker genes at CellMarker we are able to count
the overlaps and annotate these clusters by the cell types. Moreover, Enrichment Analysis is
adopted to refine the cluster labels by creating a dictionary and matching the Functional Terms
to cell types.

From Figure 3b, we can see that the stem cell cluster is closer to the enteroendocrine and
enterocyte clusters than it is to the TA cell cluster, suggesting that stem cells may be more
transcriptionally similar to these two cell types than they are to the TA cells. This goes slightly
against intuition, since TA cells are not fully specialised, but the other two types mentioned are.
On the other hand, the other cell types (Tuft, Goblet and Paneth) are separate from the main
block of clusters, suggesting they are more transcriptionally distinct from the other types. In
particular, the Paneth cells are the furthest away, indicating the least transcriptional similarity
to the stem cells.
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4 Trajectory Methods

Trajectory inference methods were developed to produce a pseudotime to help us understand
cell differentiation trajectories over time. Pseudotime is an ordering of cells in a way that pro-
duce an effective timeline based on the gene expression of a cell and can capture the dynamics
of the gene expression throughout the pseudotime. These methods achieve this by mapping
these cells into a lower-dimensional space that captures their key characteristics and then in-
ferring a trajectory before finally assigning a pseudotime based on a calculated distance from
a given root cell, giving that cell its pseudotime. In this section, we examine three methods:
Diffusion Pseudo-time (DPT), CellRank and Palantir.

4.1 Diffusion Pseudo-time (DPT)

To capture the continuous process of cell differentiation, reflected by the variations in gene ex-
pression, we applied the DPT method which utilises a diffusion map to perform a non-linear di-
mensional reduction on high-dimensional single cell gene expression data. This embeds it into a
lower-dimensional space while preserving the structure and relations of the higher-dimensional
data. This method constructs a diffusion transition matrix representing the probability of tran-
sitioning from one cell to another. These probabilities are based on expression similarity and
derived through a Markov process, which we define with the Gaussian Kernel assigning higher
transition probabilities between cells with more similar gene expressions.

STEP 1: Project cells into principal component space Let X ∈ Rn×d be the original gene
expression matrix for n cells and d genes. To remove noise and irrelevant variations, we reduced
the dimensions from d to a smaller number k by selecting highly variable genes and standard-
izing the data, we then projected the gene expression matrix onto the principal components
Wk:

XPCA = (X − X̄)Wk, Wk ∈ Rd×k

STEP 2: Construct similarity matrix using a locally adaptive Gaussian Kernel For each
pair of cells i, j, let xi, xj ∈ Rk be their PCA-reduced coordinates(i.e. ith and jth row of XPCA).
We define a local adaptive Gaussian kernel:

Kij =

exp

(
−∥xi − xj∥

2

σiσj

)
, j ∈ Nk(i)

0, otherwise

where σi is the average distance from cell i to its k-nearest neighbours (local bandwidth), given
by

σi :=
1

k

∑
j′∈Nk(i)

∥xi − xj′∥

This allows the kernel to adapt to varying cell densities and is more flexible. Notice Kij = 0
when j is outside of the k nearest neighbours, and this will result in a sparse matrix K and
hence greatly enhances efficiency in the implementation of the algorithm.

STEP 3: Normalize to obtain a diffusion transition matrix Higher similarity represents
higher transition probability, so for each cell i, we normalize the similarities to its neighbours
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j ∈ Nk(i) so they sum to 1. Then we can get the Markov transition matrix using the similarity
matrix:

Pij =
Kij∑

j′∈Nk(i)
Kij′

Written more compactly in matrix form:

P = D−1K, where Dii =
∑

j′∈Nk(i)

Kij′

STEP 4: Eigen-Decomposition of the normalized transition matrix To understand the
long-term behaviour of a random walk on the graph of cells represented by P , we perform
spectral decomposition:

Pψk = λkψk, λ1 > λ2 ≥ · · · ≥ λm

where ψk are right eigenvectors of P and λk are corresponding eigenvalues. These are informa-
tive components to understand how cells transit across states over time:

• Each eigenvector represents a direction of variation in the diffusion space. Extracting the
largest eigenvectors means extracting the main modes of variation, which help reflect the
global cell differentiation pattern.

• The corresponding eigenvalues tell us how important each direction is. The closer λk is
to 1, the slower it decays over time, and the more stable and informative the associated
diffusion direction is.

Note that since P is a transition matrix, λ1 = 1 is always the largest eigenvalue (the stationary
distribution), and all other eigenvalues λk ∈ [0, 1) decay with k, indicating less stable diffusion
directions.

STEP 5: Compute diffusion coordinates and pseudo-time We map each cell i into a m-
dimensional diffusion space using the top m eigenvectors and their corresponding eigenvalues:

Φt(i) = (λt1ψ1(i), λ
t
2ψ2(i), . . . , λ

t
mψm(i))

Here, t is a diffusion time parameter, and the resulting coordinates reflect progression along dif-
ferentiation trajectories. Finally, diffusion pseudotime is computed by measuring the Euclidean
distance squared between the diffusion coordinates of each cell and a predefined root cell r:

DPT(i) := τ(i) = ∥Φt(i)− Φt(r)∥2 =
m∑
k=1

λ2tk (ψk(i)− ψk(r))
2

This provides a scalar ordering of cells along the inferred diffusion pseudo-time process.
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Figure 4 Visualisation of diffusion pseudotime computed using DPT

4.2 RNA Velocity Analysis

RNA velocity analysis uses the ratio of unspliced and spliced RNA counts to infer the direction
and speed of changes in gene expression [8, 9]. For example, a high ratio of unspliced to
spliced RNA indicates that the gene is being upregulated; a lot of RNA is being produced, but it
is mostly not yet spliced, so we predict it is in an early stage. Conversely, a low ratio of unspliced
to spliced RNA indicates that the gene is being downregulated, and hence is in a later stage due
to more RNA having been spliced. The stages of this process can be expressed as

DNA
transcription−−−−−−−→

α
unspliced mRNA

splicing−−−−→
β

spliced mRNA
degradation−−−−−−−→

γ
degraded mRNA

The dynamics of a specific gene in a cell can be modelled as the following system of ODEs

du(t)

dt
= α(k)(t)− βu(t)

ds(t)

dt
= βu(t)− γs(t)

where u(t) and s(t) denote the unspliced and spliced mRNA abundance of the gene at time t
in a given cell, α, β and γ are the rates of transcription, splicing, and degradation, respectively.
k ∈ {induction, repression, steady-state}. During induction, DNA is actively being transcribed,
so α > 0, whereas during repression, α = 0. In the steady state case, α = constant.

Step 1: Steady-state solution Solving the system of ODEs in the steady-state case (du
dt = ds

dt =
0) gives the following

γ̃ :=
γ

β
=
u(t)

s(t)

which is the ratio of unspliced/spliced mRNA in the steady-state system. The vectors of un-
spliced and spliced counts across all cells are denoted as:

u = (u1, u2, . . . , un)
⊤, s = (s1, s2, . . . , sn)

⊤
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In reality, due to noise and variation across cells, we fit a least squares model assuming a linear
relation:

u ≈ γ̃ · s

The optimal fit is obtained by minimizing the residual norm ∥u− γ̃s∥2, leading to:

ˆ̃γ =
u⊤s

∥s∥2

and for each cell i νi := dsi
dt = β(ui − ˆ̃γsi) is the RNA velocities.

Step 2: Derive expressions for τ The full model can be solved to give

u(t) = u0e
−βτ +

α(k)(t)

β
(1− e−βτ ),

s(t) = s0e
−γτ +

α(k)(t)

γ
(1− e−γτ ) +

α(k)(t)− βu0
γ − β

(e−γτ − e−βτ ),

where τ = t− t(k)0 is the latent time and t(k)0 denote the time at which the gene transitions into
state k.
Combining the two equations and set α(k)(t) = α, the spliced counts can be expressed as a
function of unspliced counts

s(t) = β̃u(t) +
α

γ
− β̃ α

β
+ (s0 −

α

γ
− β̃(u0 −

α

β
))e−γτ

where β̃ = β
γ−β . Defining s̃(t) = s(t)− β̃u(t), we can rewrite this exepression as:

s̃(t) =
α

γ
− β̃ α

β
+ (s̃0 − (

α

γ
− β̃ α

β
))e−γτ = s̃∞ + (s̃0 − s̃∞)e−γτ

solve this equation to obtain (in the case β > γ)

τ =
1

γ
log

(
s̃0 − s̃∞
s̃(t)− s̃∞

)

Step 3: EM Algorithm The Expectation Maximization Algorithm is an iterative method to
find the maximum likelihood estimator of a probabilistic model in presence of latent variables
( variables that cannot be observed but have impact on the outcome).

Given observed data x, latent variables z, and model parameters θ, the goal of the EM algo-
rithm is to maximize the log-likelihood function log p(x | θ). By using marginalization and by
introducing an arbitrary pdf of latent variable z, we write:

log p(x | θ) = log
∑
z

p(x, z | θ) = log
∑
z

q(z) · p(x, z | θ)
q(z)

Then by using Jensen’s inequality on the concave logarithm function, we obtain the following
lower bound:

log
∑
z

q(z) · p(x, z | θ)
q(z)

≥
∑
z

q(z) log
p(x, z | θ)
q(z)
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We define this lower bound as:

L(q, θ) =
∑
z

q(z) log p(x, z | θ) +H(q)

where the entropy term H(q) is defined as:

H(q) = −
∑
z

q(z) log q(z)

Here we choose q(z) = p(z | x, θ) and this ensures the inequality turns into an equality and
obtains a tight lower bound, since Jenson Inequality obtains equality iff all terms are equal in
the expectation:

q(z) = p(z | x, θ) = p(x, z | θ)
p(x | θ)

p(x, z | θ)
q(z)

= p(x | θ) = constant w.r.t z

E-Step

In each iteration, let q(z) = p(z | x, θ(t)), then the lower bound for log p(x | θ) under q(z) reads:

log p(x | θ) ≥ L(q, θ) =
∑
z

p(z | x, θ(t)) log p(x, z | θ)︸ ︷︷ ︸
Q(θ,θ(t))

+ H(q)︸ ︷︷ ︸
Entropy term

Since:
p(x, z | θ(t))

q(z)
=
p(x, z | θ(t))
p(z | x, θ(t))

= p(x | θ(t)) (a constant)

Therefore, Jensen’s inequality reaches lower bound L(q, θ) at θ = θ(t):

log p(x | θ(t)) = L(q, θ(t)) =
∑
z

p(z | x, θ(t)) log p(x, z | θ(t)) +H(q) = Q(θ(t), θ(t)) +H(q)

M-Step

Maximize the lower bound L(q, θ) with respect to the parameters θ. Since the entropy function
is independent of θ, so it suffices to maximize Q(θ, θ(t)) and ignore the entropy term. using the
q(z) we defined in each iteration gives:

θ(t+1) = argmax
θ

∑
z

p(z | x, θ(t)) log p(x, z | θ) = argmax
θ
Q(θ, θ(t))

The expression on the right hand side after argmax is usually written as the expectation of the
complete data log-likelihood under the posterior distribution of z:

Q(θ | θ(t)) := Ez∼p(z|x,θ(t)) [log p(x, z | θ)]

Hence we see that by the choice of θ(t+1) and by considering the lower bound we could see an
improvement in the log-likelihood over each iteration:

log p(x | θ(t+1)) ≥ Q(θ(t+1), θ(t)) +H(q) ≥ Q(θ(t), θ(t)) +H(q) = log p(x | θ(t))
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In the dynamical model, the kinetic parameters β and γ are part of the model parameter set

θ = (α, β, γ),

which is estimated iteratively via the EM algorithm. The latent time τ is treated as a hidden
variable in this framework. The EM algorithm alternates between:

• E-step: Estimate τ given the current parameters θ;

• M-step: Update θ given the current estimates of τ ;

This process is repeated until convergence. Finally, the RNA velocity for each cell i is computed
by plugging the estimated parameters into the original ODE:

νi =
dsi(t)

dt
= β̂ui − γ̂si

Step 4: Compute transition probabilities Now we have the RNA velocities, we want to
compute transition probabilities. We use neighbouring cells to estimate the future direction; we
define δij := xj − xi as the displacement between cells i and j. Intuitively, if the displacement
is in a similar direction to the RNA velocity, the probability of a transition is greater. We use
cosine similarity to capture this behaviour

π̃ij =
δij · νi
∥δij∥ ∥νi∥

, only if j ∈ Nk(i)

We use an exponential kernel to transform the values π̃ij , since these are cosine values and as
such lie in the interval [−1, 1], so

πij =
1

Zi
exp(

π̃ij
σ

)

where Zi is a normalisation constant and σ is a global parameter set by softmax scale.

4.3 CellRank

Construct a directed transition matrix respecting Pseudo-time

CellRank is a probabilistic model for calculating cell fate decisions based on Markov Chains. It
originally uses RNA-velocity, but in the absence of spliced/unspliced single-cell data, we use the
Pseudo-time kernel constructed in the DPT method. When constructing the transition matrix
for CellRank, directions are introduced by modifying the original transition matrix to respect
the forward progression of pseudo-time.

Starting from the diffusion kernel K constructed in Section 4.1 using an adaptive Gaussian
kernel, CellRank ensures that transitions can only take place from earlier to later pseudo-time,
ensuring biological order in lineage progression. τ(i). We define a directed kernel K̃ by:

K̃ij =

{
Kij , if τ(j) > τ(i)

0, otherwise

The directed transition matrix this time is obtained by normalizing each row:

P̃ij =
K̃ij∑
j′ K̃ij′

If using RNA velocity rather than pseudotime, the transition matrix uses the values πij defined
in the RNA velocity section.
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Defining an absorbing Markov Chain

To compute fate probabilities, by reordering of the cells and relabelling, the cells are parti-
tioned into 2 types: - Transient cells T : intermediate states - Terminal cells A: absorbing states
(terminal fates) The transition matrix P̃ is reordered into a block structure:

P̃ =

[
Q R
0 I

]
- Q ∈ Rt×t: transitions within transient states
- R ∈ Rt×m: transitions from transient to absorbing states

Fundamental Matrix construction and Fate Probability

Define a binary random variable X(k)
ij ∈ {0, 1}, indicating whether starting at transient state i,

is in transient state j at time step k. The expected value of this variable is:

E[X(k)
ij ] = (Qk)ij

Summing over all time steps gives the expected total number of visits from state i to j:

Nij := E

[ ∞∑
k=0

X
(k)
ij

]
=

∞∑
k=0

E[X(k)
ij ] =

∞∑
k=0

(Qk)ij

In matrix form, we define the fundamental matrix:

N := (I −Q)−1 = I +Q+Q2 +Q3 + · · ·

This expansion is valid when the spectral radius of Q denoted by ρ(Q), satisfies ρ(Q) < 1,
which is guaranteed for absorbing Markov chains.

Fate Probability Matrix

To compute the fate probabilities of each terminal state, let R be the matrix of transition prob-
abilities from transient to absorbing states. Our goal is to compute the fate probability Matrix
F , where each row Fi gives the probabilities that a transient cell i will eventually be absorbed
into each terminal fate.

Fia = P(starting at i, eventually absorbed in absorbing state a ∈ A)

However, a path from i to a is not necessarily a single step. In fact, a typical trajectory will:
| wander among transient states j ∈ T , possibly visiting some of them multiple times, and
on each visit to j, have a certain chance of making a one-step transition from j → a. So by
calculating the expected counts from i to j , the total chance to end up in a is the sum over all
intermediate transient states j of:

E[# visits from i to j]︸ ︷︷ ︸
Nij

×P(j → a)︸ ︷︷ ︸
Rja
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That is,
Fia =

∑
j∈T

NijRja ⇒ F = NR = (I −Q)−1R

Figure 5 Cellrank branch probabilities toward each terminal fate across pseudotime

4.4 Palantir

Similar to DFT, we again use a diffusion map to perform a nonlinear dimensional reduction
to capture the non-linear structures of the gene expression data. As the cells differentiate and
their gene expressions vary, they follow curved and branching paths rather than straight lines,
so using non-linear dimensional reduction methods can help uncover and preserve this structure
within the data.

Palantir is a probabilistic method that is designed to model continuous and branching trajecto-
ries. It builds almost directly from the DFT method by the more explicit use of Markov chains
to simulate random walks starting from a chosen cell to calculate pseudotime and cell fate
probabilities [10].

Step 1: Build transition matrix based on Gaussian Kernel (same as DPT)

Let xi, xj ∈ Rk be the PCA-reduced coordinates of cells i and j, and let Nk(i) denote the k-
nearest neighbors of cell i. Define the local adaptive kernel that forms a sparse matrix K:

Kij =

exp

(
−∥xi − xj∥

2

σiσj

)
, j ∈ Nk(i)

0, otherwise

where the local bandwidth is

σi =
1

k

∑
j′∈Nk(i)

∥xi − xj′∥

The diffusion transition matrix P is defined by normalizing the kernel:

Pij =
Kij∑

j′∈Nk(i)
Kij′

, j ∈ Nk(i)
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Step 2: Calculate Shannon Entropy and identify terminal cells

The Shannon entropy of the transition probability distribution from cell i is given by:

Hi = −
∑

j′∈Nk(i)

Pij′ logPij′

This measures the uncertainty in the possible next states for cell i in the Markov process. We
use entropy to locate cells that represent terminal states, and lower entropies usually represent
higher stability.

Step 3: Modify transition matrix to form an Absorbing Markov Chain

Let:

• r ∈ {1, . . . , n} denote the root cell (early progenitor),

• A = {a1, a2, . . . , am} ⊂ {1, . . . , n} be the set of terminal cells (absorbing fates),

• T := Ac = {1, . . . , n} \ A be the set of transient cells.

After identifying the terminal cells and label them as terminal fates set A, We define an absorb-
ing Markov chain P̃ ∈ Rn×n by modifying the rows corresponding to A in P as:

P̃ij =


1, if i = j ∈ A
0, if i ∈ A, j ̸= i

Pij , if i ∈ T

Step 4: Define Pseudo-time as expected number of steps needed to visit a cell

Let the initial distribution π0 = er ∈ Rn be a one-hot vector centered at the root cell. The state
distribution after t steps of the Markov chain is:

πt = π0P̃
t

We define the Palantir pseudotime τ(i) for each cell i as the expected number of steps needed
to visit cell i:

τ(i) =

T∑
t=1

t · πt(i)

This is the average number of steps of visiting node i.

Step 5: Calculate Fate Probabilities

Exactly the same as CellRank, we could reorder P̃ so that transient states T appear before
absorbing states A, yielding the block matrix:

P̃ =

[
Q R
0 I

]
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• Q ∈ Rt×t: transitions within transient states,

• R ∈ Rt×m: transitions from transient to absorbing states.

We define the fundamental matrix:

N = (I −Q)−1 =
∞∑
k=0

Qk

Then as derived in CellRank, the fate probability matrix F ∈ Rt×m is:

F = NR

Each row Fi ∈ Rm gives the probability that cell i ∈ T is eventually absorbed by each fate
a ∈ A.

Step 5: Alternative computation of Fate Probability, converging to the same result

We propagate the fate probabilities π(k)i ∈ Rm (where m is the number of terminal states)
iteratively using the following rule:

π
(k+1)
i =

∑
j

P̃ij · π(k)j for all i ∈ T (transient cells)

This update rule means:

• Sort all cells i1, i2, . . . , in by their pseudo-time τ(i);

• Update fate probabilities in pseudo-time order:

π
(k+1)
i1

→ π
(k+1)
i2

→ · · · → π
(k+1)
in

• For terminal cells i ∈ A, the fate probabilities remain constant during all iterations. Each
such cell is initialized with a standard basis vector ei ∈ Rm, where the i-th entry corre-
sponds to its assigned fate:

π
(k)
i = π

(0)
i = ei, for all k ≥ 0, i ∈ A

Proof of Convergence Let the absorbing Markov chain transition matrix P̃ ∈ Rn×n be decom-
posed into block form:

• Q ∈ Rt×t: transitions among transient states T

• R ∈ Rt×m: transitions from transient states to absorbing states A

Then we iteratively propagate fate probabilities and update them according to pseudo-time
across transient cells using the recurrence :

π
(k+1)
i =

∑
j

P̃ij · π(k)j
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can be decomposed as:

π
(k+1)
i =

∑
j∈T

Qij · π(k)j +
∑
j∈A

Rij · π(k)j =
∑
j∈T

Qij · π(k)j +Ri

Stacking all π(k)i ∈ Rm for i ∈ T yields the matrix recurrence:

π
(k+1)
T = Q · π(k)T +R

where π(k)T ∈ Rt×m concatenates the fate probability of each transient cell at iteration k row-
wise. By definition:

π
(0)
T = R

And thus, it converges to the analytical solution:

π
(∞)
T =

∞∑
k=0

QkR = (I −Q)−1R = F

(a) (b)

Figure 6 Visualisation of Palantir pseudotime and entropy in UMAP space

4.5 Method Comparisons

CellRank with RNA velocity is, in general, superior to CellRank constructed using a pseudotime
kernel [11]. This is because directionality has to be inferred artificially from static data in the
pseudotime case, as opposed to using the direction inherent to RNA velocity. However, using
RNA velocity requires additional data, namely the counts of spliced and unspliced RNA, so
depending on the data available may not be viable. Moreover, CellRank identifies fate-driven
genes and tracks their gene expression across all cells, which helps to identify terminal states
by locating the region where these driver genes are highly expressed (since usually driver genes
are also marker genes of corresponding terminal states).

Additionally, Palantir produces an entropy plot in Figure 6b which represents the differentiation
potential of each cell. We can see that the ISCs have a high differential potential which supports
our current biological understanding that ISCs lie at the base of the crypt along with Paneth
cells which send stem cell maintenance signals, ensuring they stay stem cells. However, stem

20



cells are inherently cells that differentiate into more specialised cell types and replenish cells,
which is reflected in the high entropy shown in the graph. However, we see that there is a group
of cells with a much higher differentiation potential, and this clearly represents the TA-cells in
the crypt, which are known to proliferate rapidly and differentiate into either absorptive or
secretory cells and so compared to the ISCs which are receiving signals to maintain themselves.
ISCs have a much longer cell cycle time than TA-cells as well.

Unlike other methods, DPT requires a specific start point to be selected as a reference for dis-
tances. We choose ISCs as the start point, as biologically we know that these are the start point
of cell differentiation. DPT can have the advantage being resistant to noise, but the selection of
a root cell his has the potential to introduce bias if the incorrect cell is chosen [12].
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5 Cell-Cell Interactions

5.1 LIANA (Ligand-Receptor Analysis Framework)

LIANA is a unified interface tool for combining and integrating communications between dif-
ferent cell types, aiming to provide a standardized platform for inferring and comparing the
interactions between Ligand-Receptor pairs. There are 5 methods embedded in the LIANA al-
gorithm.

Figure 7 LIANA Procedure and Methods

Connectome

• Expression proportion threshold: Before computing interaction scores between cell
types, Connectome applies two key filtering steps, and interactions are only computed
for Ligand-Receptor pairs whose expressions pass the expression threshold. The expres-
sion level of ligand L in sender cell type s is based on average expression and is defined
as:

Exprs(L) =


1

Ns

∑
i∈s

xi(L), if
1

Ns

∑
i∈s

1[xi(L) > 0] ≥ p

0, otherwise

Similarly for the expression of receptor R in receiver cell type r:

Exprr(R) =


1

Nr

∑
j∈r

xj(R), if
1

Nr

∑
j∈r

1[xj(R) > 0] ≥ p

0, otherwise

Given a sender–receiver cell pair (s, r) and a Ligand–Receptor pair (L,R), the Connectome
scoring function computes:

Score(L,R)
s→r = log2 (Exprs(L) · Exprr(R) + ϵ)

where Exprs(L) and Exprr(R) are the average expression levels of ligand L and receptor
R in cell types s and r respectively, and ϵ is a small constant to avoid log(0).

• Score threshold: After scoring, weak interactions (e.g. those below a cutoff) can be
filtered out to reduce noise.
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NATMI

NATMI scores each ligand–receptor pair based on the product of their mean expression values
in sender and receiver cell types, this is the simplest method LIANA uses to score the expression
of Ligand-Receptor pairs.

Given a pair (s, r) and ligand–receptor (L,R), the NATMI score is:

Score(L,R)
s→r = Exprs(L) · Exprr(R)

This method captures the extent to which both ligand and receptor are co-expressed in their
respective cell types. No transformation or normalization is applied.

CellPhone DB (Permutation-based Differential Communication)

To assess whether a ligand–receptor pair (L,R) exhibits specific signaling between two cell
types s (sender) and r (receiver), CellPhoneDB defines the observed interaction score as:

Score(L,R)
s→r = Exprs(L) · Exprr(R)

where Exprs(L) and Exprr(R) are the average expression levels of ligand L and receptor R in
cell types s and r, respectively, subject to an expression threshold.

To evaluate statistical significance, a permutation test is performed:

• Cell type labels are randomly shuffled among all cells;

• For each permutation, new sender/receiver assignments s(perm), r(perm) are generated;

• The permuted score is then computed as:

Score(L,R)

s(perm)→r(perm) = Exprs(perm)(L) · Exprr(perm)(R)

After k permutations, the p-value is computed as:

p =
# {PermutedScore ≥ ObservedScore}+ 1

k + 1

This non-parametric test evaluates whether the interaction score observed between s and r
is significantly higher than expected under random assignment of cell type labels, indicating
signalling for specific cell types.

log2FC

The log2FC method evaluates whether a ligand or receptor gene is specifically overexpressed in
a particular cell type, compared to all other cell types.

For a ligand L in sender cell type s, the log fold-change is defined as:

log2 FCs(L) = log2

 Exprs(L) + ϵ
1

|S| − 1

∑
s′∈S\{s}

Exprs′(L) + ϵ


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where:

• Exprs(L) is the mean expression of ligand L in sender cell type s;

• S is the set of all cell types;

• ϵ is a small positive constant to avoid division by zero;

• The denominator represents the average expression of L in all cell types except s.

A positive log2FC implies that ligand L is specifically overexpressed in cell type s, relative to
background, and thus may be functionally relevant in intercellular communication.

Similar computation is applied to receptor R in receiver cell type r, and the final interaction
score is computed as:

Score(L,R)
s→r = log2 FCs(L) + log2 FCr(R)

Single Cell Signal R

This method estimates the strength of interaction between ligand L in sender cell type s and
receptor R in receiver cell type r based on an internally defined LRscore function:

LRscores→r
L,R =

√
Exprs(L) · Exprr(R)√

Exprs(L) · Exprr(R) + µ

where µ is some parameter used for saturating normalization, to prevent the dominating effect
of some high expressing genes.
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5.2 Construction and Interpretation of Cell–Cell Communication Maps

Figure 8 Heatmaps for overall interactions between cell types

Figure 8 summarises the directed ligand-receptor traffic between all the pairs of cell types found
from clustering. Using the LIANA pipeline, we first scored each individual ligand-receptor pair
and then averaged the resulting z-standardised weights for every sender/receiver combination.
Therefore, this heatmap reads as a two-dimensional bar plot where the horizontal axis indicates
how strongly a given cell type receives signals from all other lineages and the vertical axis shows
how strongly that same type sends signals to its neighbours.

Notice that since signalling is intrinsically directional, the matrix is non-symmetric. Since each
entry in the heatmap is a mean of z-scored ligand receptor hits, the plot primarily demonstrates
the breadth of signalling and not absolute potency. Deep blues (>0) indicate sender and re-
ceiver pairs whose average ligand-receptor strength is above the global baseline whereas the
yellow/green (<0) mark pairs that are below the baseline. Crucially, a negative entry does
not correspond to a lack of signalling but in fact indicates that after all expressed and non-
expressed ligand and receptor pairs are pooled together, this particular sender receives or emits
fewer or more narrowly focused interactions than the dataset’s mean. The diagonal lets us see
whether a cell type primarily communicates in an autocrine or paracrine fashion. Figure 9 con-
firm that some specialised and low-abundance populations such as Paneth cells, have some of
the strongest overall interactions, despite showing cooler entries overall in Figure 8.
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Figure 9 Heatmaps for cell-cell interactions across pseudo-time bins

Our simulation had the first pseudotime bin to only include stem and Enteroendocrine cells and
each bin is such that at least two cell types exist within that pseudotime subsection. Then, by
LIANA, we calculated the raw strength of interactions between the cell types that exist within
each bin and plotted a heatmap for each bin seen in Figure 9. These heatmaps provide a clear
view of the cell types that exist throughout different sections of pseudotime and their interaction
strengths with cells at a similar point in the pseudotime. In the early bins, only interactions
with stem cells and Enteroendocrine cells are present. Interactions involving Goblet, Paneth,
Enterocyte and Tuft cells can clearly be seen in bin 8. This is because they are terminal states
and so appear later in the pseudotime. It could potentially allow us to single out interactions
between physically close, spatially in the crypt-villus axis, cells as even though we are looking
at pseudotime, we know there is a general upwards movement of the cells as they differentiate.
We know that Paneth cells only exist at the base of the crypt, so in bin 8 from Figure 9, if we
ignore the Paneth cells, we get a clearer visualisation of how the secretory cells may interact in
the upper regions of the crypt-villus axis.
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Figure 10 Line plots for top interactions between cell types

Figure 11 Line plots for Interactions with stem cells

For interactions involving the stem cells, notice that the interaction strength is strong at the start
and middle along the pseudo-time, and drastically decrease to zero after bin 6. This is because
there are no stem cells at later stages, so no interactions at all. Notice that the interaction
between stem cells and Brush cells is initially zero because Brush cells are produced in later
bins.

For the top 10 cell-cell interactions selected, notice there are no interactions with stem cells.
This is because the interactions with stem cells usually have low strength, as can be seen from
the above heatmaps (weak contrast), so they are not chosen to be top 10 interactions. And
the interaction strength between other cells is initially around 0 and begin to increase from bin
4. We could anticipate this because Paneth, Goblet, Enterocyte and Brush cells are all terminal
states and are produced in later stages, so this follows from biological order.
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6 Results

6.1 Cluster Result

Figure 12 Clearer illustration of cell types on clusters

Figure 13 Heatmap for marker genes expression in each cluster

The horizontal axis represents the top 5 marker genes within each cluster, and colour means
the expression of these marker genes in every cluster by matching the number labels from the
vertical axis. Notice the marker genes expression of cluster 8 in itself is significantly higher than
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in other clusters, and this is verified by the UMAP of Leiden Clustering as cluster 8 is far from
the major clusters, and vice versa for clusters 3, 5 and 7. This is biologically reasonable since
they are labelled as terminal states in later stages, so their gene expressions must be special and
distinctive.
Also, by inspecting the row corresponding to cluster 8, we find that the marker gene expressions
for cells in clusters 1, 6, and 3 are very low in cluster 8. This could be anticipated because these
clusters are far away from cluster 8 in the UMAP, so they share completely different marker gene
expressions. The marker gene expression similarity could also be seen from the hierarchical
clustering on the right.

Notice Transit Amplifying cells are not shown in the cluster labels, because they are intermediate
states between stem cells and mature differentiated cells. And since their gene expressions
cannot over-weight other cell types [10], no cluster is labelled as a TA cell.

6.2 Trajectory method graphs

These graphs produced by the trajectory methods show a clear branching trajectory from the ISC
cluster to the absorptive lineage (Enterocyte) and secretory lineages (Paneth, Goblet and En-
teroendocrine). This pseudotime ordering can reveal the dynamics of gene expression through a
given branch for a specific cell fate, enabling us to better see and understand the gene dynamics.

6.2.1 Cell Rank Inferences

Figure 14 Paneth driver genes expression distribution

The UMAP projection (Figure 14) displays the expression levels of Paneth fate driver genes
across individual cells. The colour intensity represents the expression level of the given gene in
the cells. By cross-referencing the cluster label graph, the bottom left region corresponding to
the Paneth cluster appears with the highest colour intensity. This elevated expression confirms
that these genes remain highly expressed in mature Paneth cells and implies that they are
actively driving the differentiation toward the Paneth fate.

Similarly, in the UMAP of Enterocyte driver gene expressions (Figure 15), cells in the Enterocyte
cluster display elevated expression of driver gene expression compared to other clusters. This
indicates that these genes serve as markers or functional regulators specific to the Enterocyte
lineage.
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Figure 15 Enterocyte driver genes expression distribution

We could also visualize the line plot of driver gene expression in Enterocyte cells (Figure 16).
In that figure, these genes show a rapid increase in expression during early stages of pseudo-
time, followed by a sharp drop below average levels. This pattern indicates they function as
early fate-driven genes, actively regulating differentiation toward the Enterocyte lineage at the
beginning. Once the cells commit to their fate, these genes are repressed and act as transient
regulators. This is not contradictory to the UMAP distribution plot (Figure 15), which shows
relative expression levels across cell clusters. Rather, Figure 16 focuses on the magnitude and
temporal dynamics of expression over pseudotime, clarifying how these genes behave dynami-
cally during Enterocyte differentiation.

Figure 16 Enterocyte driver genes expression line plot
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6.2.2 Palantir Inferences

From the fate probability distribution of each terminal state (Figure 17), we concluded that
Enterocyte, Goblet cell and Paneth cell are very strong terminal states because the cells in
corresponding region are marked as dark red, showing a definite trend towards ending states.
In contrast, the Enteroendocrine and Brush (Tuft) states display a siginicant proportion of cells
in red or orange, with fate probabilities around 0.4 to 0.5. This suggests ambiguity in fate
assignment for these states, implying they are not strongly defined by Palantir.

This conclusion could be further supported by the entropy graph in Figure 6b , where cells with
higher entropy correspond to Enteroendocrine and Brush cell states. Elevated entropy near
these cell types indicates less stability.

Figure 17 Fate probabilities of individual cells of each terminal state

We also verified these findings using the branch probability visualization provided by Palantir
(Figure 18). In the left-hand plots, cells that increase in fate probability towards a specific termi-
nal state are highlighted, while the right-hand UMAPs show the distribution of these cells in the
clusters. For Goblet cell and Paneth cells, the branch probability plots appear discrete, reflecting
the low number of fate-committed cells and the absence of a continuous trajectory. Conversely,
Enteroendocrine cell and Brush cell are identified as weak terminal states, so their branch prob-
abilities do not show substantial changes over pseudotime. Instead, as pseudotime advances,
many cells reduce their probability of adopting Enteroendocrine or Brush fates and shift toward
other terminal states. This is another evidence that most cells eventually differentiate into more
defined lineages rather than committing to Enteroendocrine or Brush fates.
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Figure 18 branch probabilities of each terminal state
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6.3 Cell-cell Interactions Inferences

Figure 19 From Figure 1D of Sato et al. [13]

6.3.1 Paneth Cell Behaviours

Looking at both Figure 8 and Figure 9, we can see that Paneth cells are specialised niche broad-
casters, which means they are located close to the stem cells and only send a few specific but
strong signals. Figure 8 shows that the Paneth row and column are the coolest in the matrix
(approximately -0.15 to -0.32). This is the result of averaging thousands of ligand-receptor
pairs that the Paneth cells do not express in their gene profile, yet the single warmest square
in that row is the Paneth → ISC entry. In addition to the narrow range of expressed ligands
Paneth cells express which we have inferred, we can further infer from the Paneth → ISC that
they are strong. So these handful of ligands that they express such as Wnt3, REG/EGF and
DLL4 directed almost exclusively at ISC neighbours are very specific and strong. This selective
pattern is apparent in the works of Sato et all [13]. Sato states that crypt-like organoids form in
<1% of wells when stem cells are cultured alone but this figure climbs to 10% around the time
of reaching a 1:1 Paneth-to-Stem-Cell ratio is attained. Live imaging seen in Figure 19 shows
that every new crypt bud sprouts precisely where a Paneth cell touches the stem-cell cluster.

Comparing these results to Figure 8, we see that Paneth cells look ’cold’ in the overall matrix
but are still essential. Since Paneth cells occur late in pseudotime, we only see activity in bins
8 and 9, where fully mature Paneth cells appear in clusters at the crypt base. Here, levels of
Wnt3, EGF and DLL4 increase significantly and as a result, Paneth ←→ Paneth and Paneth →
Goblets squares jump to the top of the scale. Paneth cells, although rare, use a small set of
powerful ligands as they keep stem cells dividing and later stabilise secretory lineages. This
pattern matches Sato’s organoid experiment where adding just a few Paneth cells boosted stem-
cell growth around tenfold.

Moreover, looking at Figure 10, we can see that as the Paneth cells mature in the gut crypt
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near the stem cells, illustrated by bins 8 and 9, they turn out to express high raw interaction
strengths.

6.3.2 Enteroendocrine Behaviours

Now turning our attention to the Enteroendocrine cells (EECs) in Figure 8, we notice that it is
on average the darkest row. We interpret these darker squares as evidence for EECs expressing
many ligand-receptor z-scores above the global average. This observation is readily explained by
EEC biology as a single Enteroendocrine cell can express numerous peptide hormones therefore,
it contains a larger ligand repertoire than the other cell types recorded. Enteroendocrine cells
are predominantly present only in the earlier bins since a lot of these cells mature before a large
portion of the TA cells have differentiated into terminal cells.

This computational pattern is supported by a recent paper by where we learn that without the
EECs, the crypts acted like they were in a permanent ’fasting mode’[14]. In the EEC-deficient
mice, stem-cell numbers increased drastically and the epithelial barrier weakened, and as panel
J shows the animals’ total energy expenditure shot up (red line in Figure 20), indicating that
their entire metabolic system was running in overdrive.

Figure 20 From Figure 1J of McCauley et al. [14]

The dark central square in Figure 8 showing strong EEC → EEC interaction in the heatmap
could reflect autocrine feedback loops that allow individual EECs to self-regulate their hormone
secretion. It could also reflect some paracrine signalling between neighbouring EECs to act out
a more coordinated hormone release across the intestinal epithelium.
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7 Conclusion

7.1 Discussion

In this paper, we made use of the scRNA-seq workflow to help us in understanding cell types
within the intestine and their differentiation trajectories linking them. We also considered their
interactions via ligand and receptors and looked into how they may affect cell fate decisions.
By integrating in depth quality control, various trajectory-inference algorithms and finally the
LIANA framework for ligand-receptor pair analysis, we managed to evaluate cell-cell interac-
tions across pseudotime.

Our three main trajectory methods agree that there exists a main pathway that charges ahead
to become the nutrient-absorbing enterocytes, while the other trajectories veer off into the
secretory lineages (Paneth, Goblet, Tuft, Enteroendocrine). Moreover, we found that our global
heatmap made Paneth cells look quieter on average, due to a lack of numerous unexpressed
ligand-receptor pairs, but taking a closer look at the raw strengths in late-stage pseudotime
bins revealed that there was high activity of both autocrine and paracrine Paneth interactions.
Inspecting enteroendocrine cells provided us with interesting results on their importance in
early pseudotime as shown in [14]. Since these cells harbour a large set of peptide signals,
removing them would dismantle the interaction graph we constructed. This is due to the fact
that over half of the high-confidence ligand-receptor pairs in our matrix originate from EECs
and thus eliminating that source would erase those connections and leave the remaining cells
with far fewer incoming signals.

7.2 Limitations

There are some limitations and assumptions in our approach that may influence the validity
of our conclusions. In particular, since we could not directly measure protein levels or ligand
secretion, we used gene expression counts from the scRNA-seq in their place while assuming
that a high gene expression implies a high production of the corresponding receptor or ligand
protein. Furthermore, some limitations in scRNA-seq data can affect the accuracy of these mea-
surements. For example, gene dropout is where the copies of expressed genes are undetected
thereby making it appear inactive and may be due to a low capture efficiency. Another limita-
tion is gene length bias, which arises due to longer genes being more likely to be captured and
detected than shorter ones. These factors could clearly distort the cell interaction signals.

Another limitation is that we did not have spliced and unspliced RNA counts, which are typically
used to calculate RNA velocity. As a result, we had to apply a pseudo-time kernel by modifying
the transition matrix to respect pseudo-time order. Pseudotime orders cells along a progression
path based on their gene expression profiles, but it does not provide information about the speed
or strength of those transitions. So it’s a static ranking based on gene expression, rather than
using instantaneous and dynamic velocities in continuous space. Therefore, using a pseudo-
time kernel in CellRank to build a transition matrix is at most an estimation through a non-
equilibrium Markov Process.

Lastly, our data does not contain any spatial information, so we cannot determine or infer what
types of interactions are taking place, such as paracrine, autocrine, and juxtacrine signalling.
This means we can only infer general interactions between cell types, without knowing how or
where they occur.
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7.3 Future Work

As demonstrated in the results section, we were able to find interesting inferences for Paneth
cells and Enteroendocrine cells, and were able to closely explain their behaviour in the many
diagrams presented in section 5. A direct follow-up of this would be to also examine goblet cells
in more depth. In particular, we can silence a dominant mucus peptide and then re-measure
LIANA scores and check whether these fluctuate. A clear decrease would indicate that mucus-
related peptides are driving Goblet Cell interactions with other cell-types.

Moreover, one could train a machine learning model that predicts each cell’s terminal fate
using just its LIANA incoming signal profile. If the model has a high accuracy, we get strong
evidence that cell-cell signalling is sufficient to predict lineage commitment. Conversely, a low
accuracy would reveal that additional layers are required and cell-cell interactions are not solely
responsible for determining cell fates.

Future work should test our top predicted interactions through wet lab experiments as these
are currently only supported by current academic literature.

This forms a direction kNN graph where an edge i→ j exists if j ∈ Nk(i)
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